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1. Introduction

Factorial experiments in which the additive model applies have received

special attention in the applied literature because of the simplicity of

their analysis and subsequent interpretat ion . However the recent emphasis

in the life sciences on synergism and antagonism (see e.g. Rothman (l97L4))

have served to highlight the importance of experiments in which interactions

are not merely nuisance parameters but the quantities of primary interest .

This point of view suggests a number of interesting problems . For example,

?Ieyinann (1977) describes a class of multiple comparison problems for

determining synergistic effects. This paper pursues a slightly different

approach and considers the problem of selecting the treatment combination

in a two factor experiment with  both factors qualitative for which the

corresponding population interaction is a maximum. The problem was introduced

by Bechhofer et al. (1977); they give ~ detailed analysis of the 2xc case 
(two

levels of the first factor and c levels of the second factor).

The present work expands their study by considering the design problem for

arbitrary rxc experiments when the “natural” procedure based on the sample

interactions is used.

In Section 2 the model is introduced and the design requirement is

stated for th. problem . In Sections 3 and &e the infimum of the probability

of correct selection is studied by reducing the problem to a nonlinear

prograimning problem. The example of designing a 3*~ experiment is studied

in Section 5 and th. last section considers an alternative (strengthened )

version of the design requirement . 
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Model 5~n~i 7e~~ i gn Requirement

A two-factcr experiment , with both factors qualitative , is to be

~. err~rme~i with the first factor being studied at r levels and the

s& ono factor at c levels . The usual fixed-effects linear mode l is

assumed so that observations ~l 
< I ‘~ r , I < j < c , 1 < k < n )

are independent and normally distributed with me~sns ECY. . ] 
~~~ .- ijk

1. 8. + y . .  where 
~ 

= 
~ ~ 

0 are the usual
J 1 J

identifiability constraints and Var(Y
I~k
) o < 

~~~~. Here o is assumed

known but the 
~~~.. are unknown . This paper considers the problem of

designing an experiment to select the largest (algebraic) in teract ion.  Let

~
‘[l] ~-

denote the ordered values of the {y. .}.  It is assumed that the experimenter

has no prior knowled ge of the pairing of the Y [~~]~ 1 < Q. < rc and the

The goal is to select the treatment combination associated with

Initially the indifference zone formulation of Bechhofer (l95~ )

will be employed and attention will be restricted to procedures which

satisfy the following probability (design) requirement :

(2.1) p [CS] >

whenever v [ ]  ~~~~~~ and ‘
~[rc j  ‘

~[rc-l] ~~~~ where the event [CS ]

occurs iff the treatment combination corresponding to ‘
~
‘ [rc ] is selected

and the constants ~~~~ , ~~‘ and P* satisfy 0 < S~~, ~~~~~~~~~~~~ ~~
and -~ - <  P~ 1.

rc

—~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~ ‘~
- - --— -~~~~~-— ~~~~~ -. - 5  ‘5— — - -  ——~- --—5- - ~~~~~ - 5 -— -5-—- — ——
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3

Intuitivel y . .2.1) requires t~~a r c L : ’ ’~~t se lec t i - -’n oc .:ur w i t h  h igh

~~~ b~t bj .~irv  —nl y when both ~~~ and 
~[-tc- J 

1rt~ surficiently

far ’ in- ir t  and ~~~ i.~ ~u f f i ~~ient lv  p o s it i v e . When -
~ 0[rd

the ad d i t iv e  model holds . rhe ex5a~ t ~noj ce of S’~, ~~~~ 
Ps~ depends on

.~c’)nomic considerat ions ~t:~.1 i~ not .1 is- ’~~~ed ~~~~ he !‘estrj2t ions on

the S~ and .~~~~ vai.ies are required ror  there to exist matrices

which  s a t i s f y  the conditions f ( . 2 .~ 
‘
~ i . e .  for the problem to ~e nonempty.

rh~ foI lcw in ~ “fl~~~~~~t X ! S1~~ 
‘ 1 :~~~edu~’e , P , based on the ~LL E ‘s.

or the , . w i. 1 oe emnlov~? 1.

is~e n ob servations on each treatment combination and

compute ~~~~~~~~ . 
- - + (1 < I r. 1 j < c~

wnere a dot replacing a subscript indicates an average has

been computed over the elements for that subscriot . Select

t~ie treatment combination producing

max{~~. : I i ~ :‘ , 1 ~ I ~ c} as the one
Lrc ] — — —

associated with y
Crc]

~iven 2 .- r ‘ c , 3 c and ~,d*,P*), our problem is to find

the smallest value of n which will guarantee (2.1) when P is used.

Remark 2.1. While procedure P is intuitively appealing, its optimaiitv

properties are unknown . In particular it is interesting to note that a

most economical property for P and its other decision theoretic properties

cannot be determined from the works of Hall ~1959) , Eaton ~. 196’” and

Lehmann i.1966) since the joint distribution of the is singular.

--5--” .-~~~~~~~~~~~——~~~~~~ - - -  ———— - 5. --— --- - - 
- 

~~~~~~-
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3. :~ fi~~~ of the Probability of a Correct Selection

As the first st. -, in determining the minimum sample size to achieve

c.2....) ~n expression will  be derived for the probabi l i ty  of a correct

selection (PCS) when using P for arbitrary true

P ~~3~ P] ?[y , - V (~~,o) � (:,l)]

(3.1) - > 0 , 2 < a < r , 2 < 5 <

~ -~~.. + ~ c .  > 0 , 2 < a < r;
1=2 ~=2 j 2

. 
‘
~
‘ i-i ~ .~~~ 

“th > 0, 2 < b < c
:=~~ 2:2

since the - .. sum to zero over rows and columns
1J

(3.2) = P[~ + C ]  
~V ’ say , where

(3.3) — (.1 ~ i < r, 1 < j <

(3 . 4 )  = (X 22,... ,X2 ,X32,.. . ,X ) ,

(3.5) y ’ = (y ,.. . ,y ) and22 rc

C is a convex cone defined by (3 .1)  of the form {w € R ~~~ c-l)
I A W > o}.

has a nonsingular (r - l) (c - l)  variate normal distribution with mean

vector zero and covariance matrix 
~ given by

5- ~~~~~
- -

~~~~~~~~ -~~~~~-~~~~~~~~
-. -~~-- -~~~~5-~~~~~~~~ -- - . - - - -- -
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where ~ = ~. oC. ) and ~~ = (o~~.) are (c_1)x (c_l) matrices with

ent~ ies

((r-l)(c—l )/rcn ~ = j

1
=

lj 
—(r—l)/rcn i � j

and

( ~- (c—l )/rcn :

(~~.9) o~~. =

l/rcn i � j

and each row and column of ~ contains (r -1) blocks of ~~ ‘s.

So the PCS depends on ~ only through ~ and can be writ ten as

f ( ‘ )  P CX C — ’,’]n - .~.(3.g)

I , r— l
= j K exp{- ~ ~ L ~~~~
C-’,’

where 1< :

Remark 3.1. It can be easily checked from (3.1) and (3.2) that f (‘y )
n .,-

is constant under row and,or column permutations of the matrix

5- —- .— -S — —~~~ —-  ~~~~~~~~~~~~ ~~~~~~~~~~ — — 
.- — -

~~~~~~~~
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: :“n ~~~~ ~:‘om the ‘.-ec tcr  ~~~.

‘he ~.eo ign requir ement ( 2 . 1)  ~~~~ b.~ 3 a r L s f i - ~~ n is t..e smalles t

~~ 

5
)

int~~e:’ sati.sfyin~ f ~ 
> P’~ where ‘

~ 
= ‘

~ (n~ c: .osen 30 that
- — .,-

(‘~~~~ = mm f (~~) 3r~.2

F = F(:’-l,~ -1 , , 2~~ is tne convex polytope ~iver~ 5’.’ 

= 

~~~~~~~~~~~~ 

R
(r
~
1)
~~~

c
~~
1
~~~~ 

ç 
>

V 
~ — x~~, 

> ~ 2 < a ‘- r , . < 5 < C ;

i j  i.J

x. . > S~~, 2 < a
1) ~~ a~~— — —

~ 
X

j .~ 4. ~ X
11, ~ 5~~ 2 ~ . 

b

Ln the above notation row and column labe ls (a and b )  run from 2 to r

and 2 to c respectively thus preserving the analogy with (3 . 1 0 ) .  The

indices i and j range from 2 to r and 2 to c respectively .

A solution to the nonlinear programming problem (3.ll~ is called the 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5- - - - ---—5 - —.~~~~~ _____ _____



le~~~: fav ’~~~~ cor ~f i ~ ur~ t i o n (Li.~ since It re~ :~esents the worst case

tne  ~:~~~r i t i ent er  ~ust des ign  a g a i n s t .

~.i nc~ the ~ou l t iva ria te  norm al dens i ty  is log co:~c.~ve and the

ex~~’e~ sion ( 3 .~~) f~ r the ?CS or. - , - i nvolves  ‘y as a lojati:n parameter

in the domain of integration , t fo l l ows  di rec t ly  from the preservation

tae~ rem of . Borell ~~I’3) (see also Rinot t  1976) )  tha t  f (y) is also

log concave in y. Hence for , .  , ‘
~~~~ ~ F and 0 < ~ 1— —

(~~~v ~ ( 1 — z ) - y ~ > 4~f ( ‘.j} ~ f ± ~~~~~~~~~~~~~~~~~~~ > mir~(f (y~~ ,f (v ,)}  arid so the LF2
-
~~~ ~2 — n~~~~~ n - ~ — ~~~~ ~~~~~~~ -

must occur at an extreme point of F .

-— _
~~~~~~~~“ ~~~ ~~~~~~~~~~~~~~~~~~~~~~ —-- — 5-- 

--
~~~~~~~~~~~~~~~~
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~~~. xtrene Point .Analvsis

~Lrst note t n ~~t ,c— I ~~~~~~ is ~5 yen by

(
x S - 

~ x ..,’5~ > ~~~f: 5~~;

‘

~ 
~~~~~~~ — ~ . .  2 a ~

—
. 2 ~ b ~

~
‘ v - - .

~~~~~~~~~ x. /~~: > l , _ < a ~~~~r’.‘ a: — — —

~ Y x .5 . 3~ > :~, 2 )

~nd hence F ( r — l ,c—l , P~,.~~) S:~.F ( r _ l ,c~ l ,l ,.~~/ S 2 ~) where if ~ is

scalar arid 5 then ~~ t~ xjx s}. So it suffices to determine

the extreme joints of F(r—i ,c-l ,l,d~ ) in order to solve the extreme

point problem for general F s ince  x’~ is an extreme m t  of

F(r_ I ,c_ l ,3? ,lf:) - x”~”S~
’
~ is an extreme point of F(r_l,c_ l ,l,.X~~ 5:’:~

Next note that corresponding to each extreme point x~ of

F(r_l ,c_ i ,l,2~* there are (r-l)!(c-l)! row/column permutation versions

of x~ all of which are also extreme points of F(r-1,c-L .1,.~~) since

F (r-i ,c-l ,l,.~~) is row/column permutation invariant . Now from Remark 3.1.

f ( y )  is constant over each row/column oermutation version of ‘~ and

hence the ~FC ~0 must be one of the points of the subset

F’ = F’(r-l ,c—l ,l,.~
) of F given Sy

(4.1) {x F I x 22 > x23 > . . .  > x.~ and x ,2 > x 32 -~~ . . .  X
rC

}

(r—l )x(c—l)
~ R Bx 5,, say .

-.5- —5-- ——— —.5— 5---, — — 
--5 — -  — .,— - — ---.--,--~~ ,— ---—-— -- - -,—-- -- —-—— — —,-5-——--- ----— _..-.----———--. -
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-jere 3 anc k are of dimensions (rc+r+c_ ~ )x .r_1) (c_l) and (rc+r+c-4)nI

resrective .y .

2r.e final simplification ot the problem can be made . Choose P

5) r thogon . .IL. so that P E P’  is diagonal with  entr ies  the eigenvalues of ~,

siv  . , , . Then after the change of variables y = Px , f ~‘y)
(. —] . L-.~.)

Sc comes

( (r—l)(c-i) ~
(4 . 2 )  f ~~) 

: ~~~ K exr~ — 4 A .y~~dyn 
~ ~~~~~~~~~~~~ i l  1

~nd o’ = ~w € ~~~~~~~~~~~jAP ’w > 3}. Prob lem (3.11) reduces to determining

so t: at

(u .3) f (0) = mm if (‘y ) .
n - . .. ~~, n

~or moderate r and c there are several efficient algorithms

available f -or computing the entire set of extreme points of F’ such as

Balinski (1961) and Chernikova (1965). These algorithm s systemat ically

select a subsystem of the defining inequality system Bx > 5, solve it

in equality form , check the resulting solution for feasibility in the

original system and then pivot to a new subsystem . There is an alternative

method for determining the extreme points of F’ based on some ideas

from graph theory. It will be illustrated in the next section where the

complete solution to the extreme point problem is determined for the 3x~~

case for arbitrary d* and ~~* .

While the enumeration of the extreme points of F’ is always

computationally feasible , the same cannot be said about evaluating the

_ _ _  5- 5-~~~~~~”~~ . 5- -—-.-- 
- -— nr-——
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objective function f (‘,-). The expression (4.2) for f (y) requiresn,.,-
an (r-l) c— l ) dimensional int~ gr-1tion over the convex polytope , C ’ -P~’.

ifl the 3~~ example of Section 5 , f (y) is approximated by a simulation

technique based on its probability interpretat ion (3.1). In summary ,

until ~uadrature or other technique s are developed for accurately evaluating

high dimensiona l integrals over arbitrary convex domains , the limiting

factor in the implementation of the results of this paper will be the

comput3bilitv of f (y).
n ~

- — 5 -— — —- - -  -- ---5----— .- ~~~~~~~~- -_ • -  - - 5 . - — . —- , - - - - - — -5 - 5 - -- — -— 
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5. An Example

In B.chhofer et al . (197’) a detailed study is made of the design problem

~- ‘r -‘~~~~~ ex~-eriments; closed form expressions are obta ined  for the extreme

o~ F ’ ( L ,c- l ,5~ ,~~ ) for arbi t rary  ~~~ ~~ and c .  In add i t ion  the

case wi s analyzed . Tables of the sample sizes required to implement

P for .‘~ 3 , ~~ and 3~ 3 exper imen ts ar e contained in Be chhofer  and Santner

~: ‘~~~~) .

Vh e design problem will now be studied for the 3~.4 experiment for

~rhitrarv ~S’~ > 0 and ~~ 1.2~*. First the extreme points of F’ d*) E

ovor ~ 1.2 must be determined . Since it is desired to

leave .~~° arbi t rary , the algorithms mentioned in Section ~ cannot be used

to solve the problem . Instead the following two-pronged strategy Will be

used . Firs t the set of extreme points  of F’ (~~~ above the face c’ x . .  =

i I 
— J

will be determined and then the set of extreme points of F ’~ AY’) on the face

V V x . d~ will be determined .— ii

The extreme points of F ’ (~~~) s a t i s fy in g 
~ Y x . .  ~~~ can be tound
i i

by computing the vertices of F’(2,3,l,l.2). Now F’(2, 3 .l,l.2~ c

since .X~ 1.2 and hence every vertex of F’(:,3,1,l.:~ wi th ~ x . .
j 4  -

will be a vertex of F’(A*) above the face ~ x . .  2 
~~ An application —o t

i j
Bal inski ’ s algori thm yields :

(.5 .5 .5 ’\
(5.1) ( ) with ~ ~ x.1 = 1.5 and

.5 -1)

(1 1 1\
(5.2) ( with  ~ x . 4  = 2.

—2 0) i j  ~~~

- ~~~~~~~~~~~ 5- - -
~~~~~~~~~~~

-5—-5- .5 - - - - -5-~~~~~~~~~~~— — -~~~~~~~~~~~~- -



Hence for 1.2 ~~ ~ 1.5 both (5.1) and (5.2) are extreme points of F’(~~~)

while for 1.5 < < 2 only (5.2) is an extreme point ot- F’(~~~
) and

finally for 2 < < nei ther  (5 . 1 )  nor ( 5 . 2 )  is an extreme point  or

~4ext the set of extreme points  of F ’(~ :~) on the f a c e  ~ x .,.

~jIi be found . The analysis of F”(~~~) F’~~Y:) ~ ~ R~~
3 j V  Y x . ,~

:3 more easily conducted on its isomorphic image. T. under the transformation

~ given by

r ,‘ ~~ A~ —1 20~—l d”~— 1( x~~ x,,3 x,4\
3 —+ A~— l 2~ — l 2~ — l .~~— 1

~~x32 x 33 x34) 
~~~~-l ~~~l ~~~~~~~~~~ ~~~~~~~~~~

x . .  - x . 2 - x . 3  -

— 

( 

— X
23

- ~ X 3
. x ,2 x33

It can easily be seen that I is given by

~ 
(0 x12 x

13

x ( x21 x 22 x~~3 ‘
~2L4 ) ~ 0 v

~ 
x32 x33 x34)

x~~. = 4A *_ 3 ;  
~ 

= 4A~~~~ L4 , a = 2 ,3;

~ 
x11 

= 3A’~— 2 ;  
~ 

= 3A’~ — 3 , b = 2 ,3,4;
i i

X..,2 < X 23 
( x2~~; x

2 2  
< x 32

-- - . - - - . - - -

~

55 -—

~
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T is a translation of the zero row/column sum version of F”(.~~). Furthermore

it is easy to check that xc is sn extreme point of F”(~~~
) if and only if

p(x *) is an extreme point of T. Now T is a (row/column permutation version

of the ) face of a transportation polytope . Transportation polvtopes occur

as the feas ible regions of transportation problems and their structure is

well known . In particular the following graph theoretic characterization of

the extreme points of T will be required below ‘see Klee and Witzgall (1968)).

A loop of x ~ I is defined as a sequence of nonzero entries in x

such that ( 1) the row and column indices change alternately in the sequence

and ( 2 )  the f i rs t  and last elements of the sequence are the same but otherwise

there is no repetit ion .

Theorem 5.1. A point x € I is a vertex if and only if x contains no loops.

Furthermore T is of dimension 5 in the 3x4 case and hence every vertex

of I must contain 5 zeroes in addition to x~1 
= 0. There are 462 possible

ways of placing the 5 zeroes among the 11 remaining positions and a systematic

search through these candidates shows that the following elements of T

contain no loops:

0 3I.A~—l) 
3 (Ac_l) 3_2A*”

\

(5.3) ( 46~—4 0 0 0 ), 1.2 ‘ < 1.5

0 0 5A*_6)

0 3(~ *Lj) 0

(5.&e) ( L4(~ *_l) 0 0 0 ) 1.5 < ~ 2

Ae~l 0 3(A*~l) 2~*_ 3/

- - - .5-- - - -— -  
- -
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2 3(A~ —l) 0 .~~~~

(5.5) 2d~ — 1 0 0 2Ac_3 > 1.5

~ ~~~~ o 3(A c.l) 0

2 3M~—3 A~ 0 “,

(5.6) 3A*.~2 0 0 ~c_~ , .~~~ > 2

0 0 2Ac_3 2Ac_l ,~“5-. _/

‘3 3(A~~l) 0 ~~

(5.7) 3A*_ 2 0 0 Ac_ 2 ~, A~ > 2 and

~ 
0 0 3A *— 3 A ~~~ /

5-- /

0 2Ac_ 1 2Ac_2 0

(5.8) 1 0 0 A’~— l 3A* ) A~ > 2.

A*_ 2 0 0

The complete set of vertices of F’(.A*) consists of (a) those point(s)

(5.1) and/or (5.2) which are in F’(Ae) together with (b) the inverse

images under ~ of those points (5.3)-(5.8) satisfying the A* condition .

The results for general F(2 ,3,~5c ,~ *) can easily be obtained from those

for F ’ ( d ) .  The full set of extreme points of F’(A ) are stated below

in their familiar 3xL4 form where rows and columns sum to zero:

I. 1.26* < < l.Só~ : LFC is one of

(2~~ _26* 6* _
~*~~\ ,/

“ l.56* _6* -~~~ .56*

( _36* 6* 6* ) or ( _l.56* .56* .~ 6c .56* ) or
6* _2&* 0

,,.
/ 0 .56* .56*

-— ~~~-~~ ‘ --- —-- —-—‘ -- — - - -~~~~~~~~~~ 
- 

~~~~~~~~~ 5- ‘ ‘~~~~~~~ - -  -
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( 26*_ 2A* 26* _ 2A*

36*.. 3~~* A*_ 6* A *_ 6 *  A* _ 6 *  ;

A*_~* 56*_44A*
,J

II. A* = 1.56*: L~FC is one of

(
:5* _ 2 S* ~5* _ 6~

’
\ /

1.56* _ 6* _ 6 * .5~~~
”
\

~35* 6 6 6 ~or ( _j.5.5* .56* .56* .56*

\\ 6* 6* _26* 0 . 56* . 56*

III. 1.56* < ~ 26 ’~~: L.FC is one of

_26* 6* _6*~~ (Ac 26*_2A* A*_6*

~ 35* 6* 6* 6* )or ( _A* A*~6* A*-d* 25*_A* Jor

6* _26* 0) ~~~~~~ 
A*_ 6* 26*_2A* A*_tS~J

26 *_2A * A*_5*

35*_3~ * A*_6* A*~6* A*~.6* ) ;

2A*_36* A_Sc 26*_2A* 26*_Ac

IV. Ac = 26*: LFC is one of

(26* _26* 5* _5*~~~ (26* _26* 6* _ 5*~~

( _26 * 6* 6* 0 )or f 
_35* 6* 6* 6* ) ;

5* _26* 6*
,,
! \~ 5* t5* _26* 0

,,
/

V. A* > 26*: LFC is one of

26*_2~* A*.~6*

( 3t5~~3A’~ A*_6* A*_6* Ac_o* 
‘

~or

A*_6* 26*_2A* 26*_A*
,J

5- — - ——5- ._. _ _ _



( A~ 26*_2A~ 6~

5*_ 2A~ A~ _6* — 6~ S~ or

A ~~
— 6 ~ A ~~~ ~ 2 ~ ~—A — A /

./

/ Ac 26 2A A — 6 — .
~

S*_2A *  A~~~6* Ae~~S~ 5:~ or

‘I A*_ 6* A*_6* 26*_2A~ 3

A~ -~S~

3 A~~6~: 2~~ —2A~

\~~6*_2A* A*_ 6c

Af ter making the change of variables described in Section 4 it is easy

to check that f (y) c-sn be written in the f orm P[A(PX * VY~~/ ,y ) > 0]
—

where x = (X 22 , X., 3 1X 24 ,X 32 ,X 33, X 34
) ~ N 6 [~~,I 6

], y ’ = (y 22 ,y23
,y
24

,y32,y 33
,y
34
),

P is an orthogonal matrix satisfying

-~~6 -2 -2 -3 1

7’ :~ : — : : :
= 

-

~~ 

~~ :~ i~ 
:~ 

and
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1 1 1 1 1 0 2 1 1 2

~~~1 1 1 1 0 1 1 2 1 2 1

1 1 1 0 1 1 1 1 2 2 1

1 1 0 1 1 1 2 1 1 1 2  1
1 0 1 1 1 1 1 2 1 1 2 /

i 1 1 1 1 1 1 2 1 2,/
’
.

For any fixed R A */6* > 1.2 the extreme points of F’(2,3,6*,A*)

listed in I-V can each be written in the form t5 *.~~(R) where ~(R) is a

6x1 vector whose value is independent of 6*. For example the three extreme

points of I are: d*.(1,1,l,l,_2 ,O), 6*.(.5,.5, . 5 ,.5,.5,_1) and

6*.(R_1,R_l,R_ l ,R_ 1 ,R_1 ,5_LeR) respectively. Hence for fixed R the PCS

evaluated at extreme points 6*.~ (R) is f(6*.~ (R)) = P CA ( P ~ + v’T~~ 6*/a~(R ) )  > 0]

which is a func tion of the scalax’ quantity v’~ 6*/a. A short table of ~~~ 6*/a

values was constructed for various P~ and R pairs (1.2 < R < 1.5) by

(a) determining th, zero of h(/~ 6*/a) f (6* .~ (R)) - ~* for each candi-

dates LJ’C 6*.~ (R) listed in I and (b) choosing as the true LFC that point

having the 1~rgest ~~ 5*/a value associated with it. That largest i/~~ 6*/a

value was recorded in the table for the ~* , R coordinates. The values

of P(A (P~ + ~‘T~ 6* fa .~ ( R ) )  > 0) where approximated by Monte Carlo simula-

tion; vectors of six iid N(0,l) random variables where generated and the

set of inequalities in th. above event were tested yielding a Bernoulli trial

with the above “success” probability. Th. zero of h (r~ 5*/a) was evaluated

by a Robbins-Monro type of stochastic approxi mat ion scheme .

It was determined that for fixed i/~~ 5*/a, PCA (P~ ~
. vi~~~ 5*/a .~~( R ) )  ‘ 0]

is extremely flat in R over (1.2,1.5); furthermore the same point ,

- - - —-——5 ~~~~~~--- ~~~~~~~—- - —~~~~~~-— — — -
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was the LFC in all cases studied . Hence the following

table gives values of /~~ 5*/a which are accurate for the entire range

1.2 < ~ : A*/5* < 1.5 for each listed ~* value.

Pc
.90 .95 .99

v’~ ~* I 1.99 2.35 2.66
a t

The values listed ha ve been rounded off from 3 place comp utations and should

be accurate to two places. These computations were carried out on

2ornell Universi ty ’s IBM 360/168 computer.

- - --a- ~~~~~~~~~~ - -  
. 
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6. ?r~ f~rred Population Formulation

h.Ls section .i~scrioes the preferred population formulation of

Fabiar. ~~~~~ for determining tue sample size to be used with procedure

P . Th is formulation is a strengthening of the indifference zone

requirement (2.1) (see Fabian (1962) and Pa~chapakesan and Santner

Fix .S~ and A* as in Section 2 and call the pop ulation

interaction y (or treatment combination ( i , j ) )  preferred (or near

o~~ imal) if f  either (a) ‘
~Crc] 

< A~ or (b) “Crc] ~ 
A~ and ‘y . .  >

The goal is to select any treatment combination having a near optimal

t~et ~ be the space of all rxc matrices with row and column

sums equal to zero and P* ~ (l/rc , 1). The probability (design) require-

ment to be guaran teed is

(6 .1) P [CS~ P) > P* V y~~~~I —

where the event [CS~P] occurs iff a preferred treatment combination is

selected .

Let ~~~ I < 
~ 

< rc be that subset of ~2 in which exactly P..

are preferred . Some cL ’s may be empty,  however it can easily be

shown tha t 0rc ~Z € 

~~
‘
~[rc] 

< A’~} and 
~ ~~“[rc ] >

1[r c] - ‘
~[rc-l 

~ ~~~~~~~~~ Since 
~~~~~~~~~~~~~~ 

= ~ Z ~ ~rc it suff ices to

compute inf P CCS I P] for i € (1,... ,rc-l} in order to determine

inf P [CSIP]. For i ~ I define

~2 Z



= -‘~~ , , . . .  ,x . . ~~~ . , )
1 ~, ~r’~;’) [:~c1 (rc—~.t~,) {rc—i.+~.]

> ~a.\t.\( 
~

) + [ ] ~~~~
• I.\(L)+lC~~J

}]

= , — ‘, , ~nc y , s ::~e SSImDIe interaction havIu~~~~~~~ ( . . ) C . . ]

Note that P [c.~~P] = ‘
~ 

- 
~~~. ~nd the -~vents-

~~~~: . , ‘ ,~ ~~~~~~ nondecreasi:.~ in i for f ixe j ‘,.

Remark ~~ .. Re~;uire:~ent (3.~~) i~~1cs that P[E,(’)] P~ V ‘,

.~r.icn is (2.1) and hence (6.1) is a strcn~thenjn~ ~f t inJifferen~ e

zone approach.

Theorem 6.1. inf P [13~P] mm m t  ? [EJ-1 )] inf P [E ( ‘, ) ]  and her.o.~j  
~~ ,~ 1 ~ 1 

1 ‘-.
1

the same sam~’le size achieves both (1.1) an~ ~~~~~

Proof.  Giv en i , 2 < rc , It follows that the ordered conDonents of

‘ , j~~~~~~~. satisfy ’, ~~ and ’, .. > I  . .  ~~~‘,Crc] — Crc] — — [r ’ c— L+ .~.] Crc ]  —

Ii ,, -. •,  > 1r i~ 
By decreas in g ‘

~r - - tO ‘( i!- . , ‘ ‘V -~~~~~L-  - — l J  — — LI J  L r_ — 1 + .~.] ~~~~~~~~~ 
— IrL I

and increasing the components 
~[l]

’’• I’Y~~~~~~~.] to preserve row and

column sums equal to zero it can be seen that there exists ~~~
‘ = ~~~

‘ (
~~~~~

sa:isfvin~ 
> rc-isl < Q.. < rc and ~~~~~ 1 < ~- 

< rc-i.

This irnvlies £.v~
) E.(Y’) and hence V

1 \. \~ ~.

> P E E . ( y ’) ]
1 ‘~~ 

— 2. ‘~

> P E E .  (‘r’)] since E. (v ’)  C
— 1—l~~ 1— 1’,

> inf PEE . (t)] since I’ ~— 1] .  ~~

~ 2.-I

— i~ f PEE.(r)] ~ inf P[E.
1
(r)), 2 < i < rc and the result follows by induction .

~i—l 

—~~
5-— 
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1~ m is formulated using an indifference zone approach;

h.~ ~x:e nte~- i~ required to specify quantities (A ~ , ’~,P~’i) satisfying

o < .
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‘
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-
~~~ 1~

’
~ and ‘~~

— < < 1 prior to the start of(r -~~) ( c - l) - 1  rc

experimentation . These quantities are incorporated into a probability

(design ) requirement which nust be satisfied by the selection procedure .

The paper analyzes the LFC based on the log-concavity of the PCS regarded

as a function of the population interactions and on the characteristics of the

:referonce zone. The 3x14 case is examined in detail.

The problem is reformulated using a preferred population approach

which employs a strengthened version of the indifference zone probability

requirement . It is shown that the same sample size guarantees this

strengthened probability requirement as does the earlier one.
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